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SUMMARY

An algorithm has been developed for the forced convective diffusion-reaction problem for
convection inside and outside a droplet by a recirculating flow field hydrodynamically coupled at the
droplet interface with an external flow field that at infinity becomes a uniform streaming flow. The
concentration field inside the droplet is likewise coupled with that outside by boundary conditions
at the interface. A chemical reaction can take place either inside or outside the droplet or reactions
can take place in both phases.

The algorithm has been implemented and results are shown here for the case of no reaction
and for the case of an external first order reaction, both for unsteady behaviour. For pure interphase
mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet
concentrations have been obtained as a function of the physical properties and external flow field.
For mass transfer enhanced by an external reaction, in addition to the above forms of results, we
present the enhancement factor, with the results now also depending upon the (dimensionless) rate
of reaction.

INTRODUCTION

There are many industrial and environmental processes in which two-phase fluid-liquid
systems are in use. Gases may be dispersed as bubbles in liquid phases, such as occurs in bubble
columns and sparged vessels. Liquids may be dispersed in gases, such as occurs in scrubbers. And
a liquid that is immiscible or partially miscible in another liquid may be dispersed in a liquid-liquid
spray column extractor or reactor. The design of such systems may involve heat transfer, either
intentionally or incidentally, but the widest range of applications involves mass transfer. Interphase
mass transfer may proceed into or out of the dispersed phase. One (or more) chemical reaction(s)
may take place in either the dispersed or the continuous phase in order to enhance the rate of mass
transfer. In two-phase reactions, certain of the reactants may be transferred from one phase into
the other, where the reaction takes place, and the reaction products may then be transferred back
into the first phase. Reactions may also occur in both phases.

Because of the finite, generally small volume of each drop or bubble, interphase mass transfer
unaccompanied by chemical reaction is inherently unsteady, regardless of the direction of mass
transfer. Even if there is a reaction that admits of a steady state in the drop or bubble, unsteady
behavior may nevertheless be of practical even primary importance.

The continuous phase is inevitably in motion relative to the dispersed phase, and for clean
systems (containing no surface active agents), the motion in the two phases will be hydrodynami-
cally coupled.
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We undertake here for concreteness a liquid-liquid system in which a chemical reaction may
take place in either or both phases. The dispersed phase is sufficiently dilute that the droplets
which sediment (either falling under their weight or rising because of buoyancy) may be assumed
isolated in an infinite medium, both with regard to fluid mechanics and to diffusion and reaction.
The droplets are taken small enough that interfacial tension dominates shape effects and they are
spherical. Although the approach we take and the methods we use do not require that that viscosity
dominates flow effects and that the velocity fields have low Reynolds numbers , we consider the
hydrodynamically coupled Hadamard - Rybczinsky profile for circulation within the droplet driven
by an external velocity field that becomes a uniform streaming flow far from the droplet. Physi-
cal and chemical properties are assumed constant, which would be the case for dilute isothermal
systems, and we thus analyze interphase mass transfer for the forced convective diffusion-reaction
single-drop system. We investigate, specifically the roles of the reaction rates, as measured by
appropriate Damk&hler numbers, the solubility of the solute in the phases, as expressed by the
linear distribution coefficient (Henry’s law), the ratio of convection to diffusion, as measured by the
Peclet number, and the ratio of the viscosities and that of molecular diffusivities of the two phases.

GOVERNING EQUATIONS

The dimensionless forced convective diffusion-reaction equations governing the solute con-
centrations in the drop (0 < 7 < 1) and the continuous (1 < r < oo) phases, 1 = 1,2, respectively,
can be represented in the form

@O N L
% + KOv0.7e0) = kv20 _ kO (1)

where i = 1 corresponds to the internal domain 0 < 7 < 1, and ¢ = 2 to the externalone 1 < r < oo.

The dimensional partial parabolic differential equations have been rendered dimensionless
using the droplet radius R as the characteristic length scale. The concentrations are measured in
units of initial driving force,

) = HO ) — Héy

EO—HEoo ) 7'=1’2a (2)
in which
. 1, 1=1
B = (3)
H, 1=2,

with H the Henry’s "law” distribution coefficient.
The characteristic time scale can be selected, for example, on the basis of the fastest physical
or chemical process, occurring in the system, viz.,

T, = min(‘ré;zw , Tgf)f , 7',(21 , 1=1,2), (4)
in which
2
, W __ R o _ B 5_ 1 .
Tconv - f(')(ﬂ) Um; Td;ﬁ' - D(")) Trxn - k("')’ 1= 1,2 . (5)
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The diffusivities and rate constants for the first order chemical reactions are denoted by D) and
k() respectively, and the K’s represent different combinations of standard dimensionless parameters
for different choices of 7., as indicated in Table 1.

Although our numerical implementation of the algorithm requires only that the velocity
fields in the two phases be separable, for concreteness we have used the Hadamard - Rybczinsky
solution for the convecting velocities in the dispersed and continuous phases. In this instance, the
characteristic velocity in each phase, with Uy, the freestreaming uniform flow at infinity, is taken
as

¥ = fO(u) Vs, i=1,2, (6)
in which
M) = — (2)(y) =1
W) = gy T ()
with the viscosity ratio
p=pMu® (8)

The equations (9) are the ones used in the sequel, reflecting the selection of Tgf)f as the unit
of time: :

i i (¥) i
aC( ) + Pe(z) . (v(.-) Bc( ) _ i\/l—-—ﬁaac;)>
2 T T

or or
DO (19 dcld) 18 dc)
=3<z‘>'{rza (”T»)*“:f:ﬁ =27 } (©)
_ <-'>2‘L’.(u> _H'-‘g_) .
Da”D(z) e+ - His)' 1=1,2,

with A = cos?, subject to the boundary conditions at the droplet interface,

c(1) = £(2)

r=b (1) (2) (10)
ac\t) _ dc
H-D 5 ="5r
and at the limits of the overall domain,

r=0: <o (11)
T — 00 ) BNy (12)

Periodic boundary conditions in angle variable
lal 0, i=1,2 (13)
YR =V, 1=1,4 13

a9 9=0,x

after introduction of the new independent variable X are satisfied automatically.
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The concentrations are subject to the initial conditions:

t=0: cW=1 =0 (14)

The actual direction of mass transfer may be out of or into the drop, depending upon the
driving force (o — Hés ), even though the formulation of the problem suggests transfer from the

droplet.
The opposite direction of mass transfer in the actual problem would lead to the appearance

of the inhomogeneous part in the reaction terms in (9) (but only when the corresponding % #0).
THE ALGORITHM

The problem is linear, and we use the Galerkin spectral method for the spatial discretization.

The advantages of this method are well known [1, 2].
We express the unknown functions ¢(*)(7, ), 7) in a customary manner,

M
(A r)= S (r,r) Pa(}), i=1,2, (15)

m=0

in which the P, () are the Legendre polynomials of order m and the coefficient functions c (T r)
are termed “radial functions” for brevity in the sequel.

The discretization in the radial direction is performed in somewhat different ways for the
internal and external domains.

Using Equation (9) for mass transfer inside the droplet (i = 1), it is a simple matter to

show that functions cs,l.)(-r,r) obey the following restrictions :

MNrr=0)=0, 1#0 (16)
Bcfl)
or r=0 - 0, l # : (17)

cg‘)(r, 7) - even function of r
k=0,1... (18)

Cgk)+1(7'a r) - odd function of »

On the basis of these restrictions, the radial functions inside the droplet were approximated
by a series in even Chebyshev polynomials:

N
(r,r) = mo- ao(T) + 7Y ¢ (T) Tana(r), m=0,1,...,M (19)
n=1

in which the T,(r) are Chebyshev polynomials of the first kind of order p, and

K2j =2, j=0,1,... (20)

K1 = 1, K241 = 3, J = 1,2, e (21)
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Using (19) we automatically satisfy boundary condition (11), avoid the singularity at the
origin of the drop, and the function ag(7) represents the value of the concentration at the origin.

Such an expansion on the interval 0 < » < 1 is valid as the even Chebyshev polynomials
form a complete set for the type of functions considered [10].

The use of half the commonly used interval [-1, 1] permits us to double the highest order
of the polynomials used, leaving the number of terms in the series unaltered.

The nonuniformity of the distribution of nodes in the spectral method (their number in
close proximity to the surface is higher than near the origin) matches the physics of the problem
as the concentration gradient near the interface is much bigger.

For the semi-infinite external domain we implement the widely used procedure of truncating
it at an appropriately large radius 7, far enough from the interface to make the disturbance
introduced negligible. The boundary condition at infinity (12) is now imposed on this artificial
boundary. It could be imposed as "hard”, "soft” [12] or "behavioral” [1, 13]. We use the "hard”
one,

T=re: =0 (22)

because it immediately results in original boundary condition (12) if 7o — 00.

It is necessary to realize that by doing this we are changing the physical sense of the problem.
The decrease of the concentration to zero infinitely far from its source is caused physically by the
spreading the species over an infinite spatial volume. After introduction of the boundary sphere
at 7 = T, Wwe model this decrease by imposing what amounts to an infinitely fast heterogeneous
reaction on the artificial boundary r,,. The only justification for this is an a posteriori one, viz.,
by checking that the increase of r, does not alter the solution in the vicinity of the droplet and in
particular the interphase mass transfer.

Our computations have confirmed this and show that when r., is chosen sufficiently large
the choice of the particular type of boundary conditions mentioned above does not influence the
resultant concentration distribution in regions where its value differs significantly from zero.

The domain 1 < r < 7 is mapped onto the interval —1 < z < 1 in such a way that the
point z = 1 matches » = 1 and the point z = —1 matches r = r,,. Among the wide variety of
possible mappings two are used more often than others, the exponential and rational ones ({1, 2]).
A comparison by Grosch and Orszag [11] has shown that the latter mapping has some advantages
over the former.

Specifically, we use

r—(144)

- 20 ) _
(-n(1-72) -9
where 6 is the parameter representing the distance between the droplet surface and point mapped
into z = 0. It is worth mentioning that we have also implemented the exponential mapping and

could find no advantages for the rational mapping over it.
The radial functions in the external domain are expanded as

zZ=

) (23)

N(2)
CS:)(T’ Z) = Z ¢5125,)n(7.) Z"(Z)1 m= 0) 1, RS M: (24)
n=1
where the Z,(z), n=1,2,...,N (2) are linear combinations of Chebyshev polynomials, each satis-

fying the boundary condition following from (12):
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Za(z=-1)=0, n=12,...,NO, (25)
We take

Za(2z) =Tu(z)-1 (26)

Zak-1(2) = Taea(2)+1

Thus, we reduce the system of partial differential equations for two initially unknown func-
tions ¢(!)(7, A, 7) and c(®)(7, A, ) to a larger system of ordinary differential equations in 7, for

ao(1), $ah,, 88, m=0,1,..., M, (27)
n=12... ,NU n,=12.. N3

The total number of these unknown functions is 1+ (M + 1) (N() + N(?)).
In order to obtain equations for these functions we use the conventional Petrov — Galerkin
method, i.e., the basis functions are taken as the test functions [2]. We define two inner products:

. (f:g)(l)ELII 2 /olf'g%1 (28)

1
(ro)@= [ o [ f9ims. (29)

Forming by (28) the inner product of (9) for ¢+ = 1 with the test functions

Po(A)To(r), Pm(A)r™ Top,—2(r), m=0,1,....M, m = 1,2,...,N®O 1 (30)
and by (29) the inner product of (9) for i = 2 with the test functions

Pm(A) Zny(2), m=0,1,....M, np=1,2,..., N®_1 (31)

we obtain two vector equations

. (¥) . . . . . . ) N
A®) d_zr_ - (_th) B + .K‘(;) BGd) _ KS:) B(i.f)) . 4,(1) + K,(.') b , 1=1,2. (32)

Here A(9), B("c), B(4d), B67) are {1+ (M + 1)(N®) - 1), 1+ (M + 1)N()} matrices,
b() — {14 (M + 1)N(®)} are the vectors of inhomogeneous terms, and ¢{)(1) — {1+ (M +1)N()}
are the unknown vectors,

$O(T) = (@0, 85+ Bokiars -2 s+ By )T (33)
o@(r) = (¢&),.. BN a1 B B )T (34)

The remaining 2 (M + 1) equations are derived from the boundary conditions (10) which
are implemented by the Lanczos tau-method (1, 2, 14].
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Upon substituting (19) and (24) into (10), multiplying by Pm()), m =0,1,..., M and
integrating A from —1 to 1, we obtain two sets of M+1 linear algebraic equations:

Q.41 = Q(@).4(2), (35)

H.D-sW.40) = (.4 (36)

where QU), S() are {(M +1), (M +1)(1+ N())} matrices, i = 1,2.

By expressing ¢Srlt.)N(‘) and ¢':’)N(,), m = 0,1,..., M, using the system (35)-(36) and
substituting in the system (32), we arrive finally at the system of 1 + (M + 1)(N() 4+ N() - 2)
linear ODEs:

A‘—?;_— = (B©) + B@ + B(").¢ +b. (37)

The constant matrices B(9), B(%) and B(") correspond respectively to the convective,
diffusive and reactive terms in the original equation (9), b is an {1 + (M + 1)(N() 4+ N(2) _ 2)}
constant vector and ¢ (7) is the vector of unknown functions

2 2 .
¢ = (a0, 860 Fonrop B Fope B B Bhtns B )T (38)

and not simply a concatenation of vectors ¢ (1) and ¢ .

The matrices A, B(# and B(") are block-diagonal. They all have M+1 nonzero square
{NW4N@ -2, N4 N -2)} matrices on their main diagonals and their first 1+(N )+ N(2)-2)
elements in the first row and the first column are nonzero.

The matrices B(¢) that result from transforming the convective terms also have block struc-
ture with the same block sizes. However, they are no longer block-diagonal and the amount of
nonzero block-diagonals depends on the velocity fields v, i = 1,2. The higher the degree of
A that is involved in the velocity field expressions, the greater the coupling between the radial
functions of different orders will be. And the increase of the order of this coupling leads to the
corresponding increase of the number of nonzero block diagonals in B(<).

For the Hadamard — Rybczinsky field, for example, these matrices will be block-tridiagonal,
and for the velocity field in [15] valid for higher Reynolds numbers, block-pentadiagonal.

The discontinuous initial conditions (14) are not appropriate for computations. Instead
we used the analytical solution for the pure diffusion case (no convection, no chemical reaction)
derived in [16]. The concentration distributions for very small time values were expanded over our
basis functions Ton—2(r) and Z,, n = 1,2,... to initialize the computations, and the coefficients
obtained were used as initial conditions for ao(7), ¢$,1.,),,1 , and ¢S,f,)n,, m=0,1,.... M, n =
,2,....,NO -1, n;=12,...,N® -1,

For time discretization of the system (37) we use the first-order backward Euler method.
Defining ¢™ as vector ¢ at the n-th time step of magnitude A7 and

system (37) can be rewritten as
(A - ATB)-A¢™! = ArB-¢" + Atb, (40)
where
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A¢n+1 - ¢n+1 _ ¢n. (41)

Every time step system of linear equations (40) was solved by regular Gauss elimination
(preceded by LU decomposition) with the following iterative refinement [3]. The matrix on the
left side of (40) has the same structure as matrix B; as mentioned above, it is block-tridiagonal
for the Hadamard-Rybczinsky velocity field. Our attempts to apply block-elimination methods (in
particular, block Thomas algorithm [4]) failed presumably because block LU factorization does not
involve pivoting which is essential when diagonal dominance does not occur (which is the case for
high Peclet numbers).

We considered the matrix on the left side of (40) as a banded one with bandwidth 1 +
3(NW 4 N —2).

As long as this matrix depends on the time step and its factorization is a time-consuming
process, only two values of the time step were used for each run. A smaller one was used for an
initial time period and an another one for the subsequent time range.

The numbers of terms in series (15), (19), and (24) depend on the steepness of the con-
centration gradients and were different for different values of Peclet and Damkdéhler numbers. The
maximum numbers used were M = 87, N(}) = 25 N(2) = 97,

As is well known {1, 2], an increase in the number of terms in a spectral series (especially
in the series in Chebyshev polynomials) leads to very high condition numbers for the resulting
system of linear equations. This was alleviated by using double precision in all computations and,
as mentioned above by application of the iterative refinement to the solution obtained with the
Gauss elimination procedure.

QUANTITIES OF INTEREST

The most practically interesting quantity in extraction problems is the amount of material ex-
tracted by particular instant in time. For the problem under consideration (i.e. when species are
extracted from the droplet) this can be conveniently characterized by the time-dependent average
dimensionless concentration of species remaining in the drop:

1 1
) = E./ / r2c)(r, A7) dXdr (42)
2 Jo Ja

This quantity changes in time as a result of mass transfer out of the droplet. The local and
surface average rates of this transfer are characterized by corresponding mass transfer coefficient,
the quantities which when multiplied by the driving force give respective mass flux rate. The
nondimensional mass transfer coefficient is usually referred to as the "Sherwood number” which is
analogous to the Nusselt number in heat transfer problems.

Different kinds of Sherwood number can be introduced, depending on the driving force upon
which it is based and the domain to which it is related.

For the problem of single-drop extraction, the instantaneous driving force for mass transfer
is the difference between the concentration of the transferring species in the droplet and that far
away from it, taking into account the step change of the concentration at the interface due to
solubility,

Flan) = 71 _ Héy, (43)

where &) is the dimensional average concentration of species in the droplet.
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Often the Sherwood number is based on the maximum possible (or in our case, initial)
driving force:

Fi%) = gy — Héoo . (44)

~ Here we consider only the external Sherwood number, i.e., the nondimensional rate of
transfer of species from the external side of droplet surface into the external flow.
The local and average Sherwood numbers defined on the basis of maximal driving force are

respectively:
(2)
Shigeo = —2H-D a; (45)
‘ T r=1
| =
" and
| 1 52
Sho=-H-D dX. (46)
-1 67' r=1
Corresponding values based on instantaneous driving force are:
Shloc 0
Shloc = - ) 47
1) 4 2o H/FS™) (47)
Sh
- (48)

h= .
&) 4 g H/FS®

Obviously, the chemical reaction in the external region increases the rate of the extraction,
and this increase is characterized by the enhancement factor, which is the ratio of the corresponding
mass transfer rates [5]:

Sh(Da) # 0
e Sedhnd § S S
5 ; 0 )
Sh(Day; =0)

COMPUTATIONAL RESULTS AND DISCUSSION
The results of the computations presented cover the following ranges of parameters:

025<D<4,
0 < Pe® < 500,
2
0 < Da$? < 1000,
H=u=1.

The characteristic time scale was chosen as

| T =g (50)
; which is just the Fourier number based on the diffusion coefficient of the external fluid. The times
appearing on the plots are expressed in these units. The values of Peclet number Pe and Damké&hler

number Da presented on the plots correspond to Pe(?) and Da(l"}) , respectively.
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To illustrate qualitively the process of pure mass transfer (no reaction) from the droplet we
present in Figures 1-3 the curves of constant species concentration at different times for various
levels of external convection (Pe(?) = 10, 200, 500 respectively).

The well known and intuitively expected increase of mass transfer with increasing convection
is apparent.

The influence of internal circulation on the development of the mass transfer process is
illustrated in Figures 4-5 where we present the isoconcentration curves for the same external Peclet
number (Pe(?) = 500) and different ratios of internal and external diffusivities (D = 0.25 and
D = 4.0).

For D = 0.25 the internal convection is much stronger in the sense that the value of Pe(1)
is larger. As a consequence the isoconcentration curves inside the droplet lie close to the internal
streamlines, a result already obtained numerically by Johns and Beckmann [7], for the special case
of mass transfer resistance solely inside the droplet. The coincidence of internal isocontours with
internal streamlines also constituted the basic assumption of Kronig and Brink’s model of mass
transfer in a circulating drop [6]. From a simple comparison of the isocontour levels in Figures 4
and 5 alone one infers that the mass transfer from a droplet for D=4 is much more intensive than
for D=0.25. The reason that the internal Peclet number Pe(1) is greater for D = 0.25 is not that
the internal circulation is greater, for it is not (x = 1), but that the internal diffusivity is smaller.
Nonetheless, it is customary for brevity to describe an increase in Peclet number as an increase
in convection, rather than the more lengthy but more accurate increase of the ratio of convection
to diffusion. In this usage, one may phrase the conclusion drawn from Figures 1-5 as follows:
convection outside the droplet increases the rate of extraction but inside convection supresses the
rate of transfer.

The influence of the external reaction rate on the concentration distribution is shown on
Figures 2, 6 and 7. As could have easily been anticipated, an increase in Da(Izj) results in faster
extraction and an almost immediate disappearence of extracted species outside the droplet (almost

no species here for Da(f,) = 100 in Figure 7).

Figures 8 and 9 show the effect of reaction rate on the local Sherwood number. The values
of Shieco go to zero with time for all values of angle variable ¥, although the distribution of
Sherwood number based on the instantaneous driving force approaches a nonvanishing asymptote.
An increase in the reaction rate thus results in a general increase of mass transfer and of values of
the Sherwood numbers, but the temporal variation of values of local Sherwood numbers at different
locations is less transparent, warranting further investigation.

Figure 10 reflects the behavior of average Sherwood number Sh in time for different values of
external Peclet number Pe(?) for the no reaction case. The oscillations of Sk were computationally
obtained by different investigators including mentioned above Johns and Beckmann’s article [7]
and Oliver and Chung in (9], who were solving conjugate unsteady heat trasfer problem which
is mathematically analogous to the mass tranfer problem under consideration when there is no
chemical reaction involved. These oscillations are caused by the internal circulation with the most
detailed physical explanation given by Brignell in [8]. Consequently the period of these oscillations
is smaller and the amplitute greater the higher the Peclet number is. The stronger convection also
leads to a higher mass transfer rate as it creates the thinner diffusion boundary layers on the both
sides of the droplet surface.

Figure 11 illustrates the influence of the rate of external chemical reaction on the average
Sherwood number. The plots here confirm the made above conclusions of the increase of the rate
of extraction with the increasing external convection and rate of external chemical reaction.

In more evident way this is reflected in Figure 12, where the decrease of average droplet
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concentration with time is presented. From this picture we can also deduce a very important
conclusion that an increase in the reaction rate over some value will not benefit the extraction
results (the diffences between the average droplet concentration for Da(ﬁ) values of 300 and 1000
are pretty small).

Figure 13 shows the effect of reaction rates on the values and time behavior of the enhance-
ment factor E. The oscillations here are the consequeces of the internal circulation, the same as
for corresponding average Sherwood number on Figure 10. The values of E corresponding to the
same reaction rate are higher for smaller Pe(?) (lower convection). The possible explanation for
that could be that the corresponding values of Da(lz) which are just the ratios of Da(lzf) and Pe(2)
are smaller for higher Pe(?).

Finally, we wanted to underline that the purpose of this article was to present the developed
numerical algorithm and to show what kind of results can be obtained. Our further articles will
include additional results and more detailed analysis of those results as well as of the results
presented in this article.
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NOMENCLATURE

-dimensional value of the concentration in the origin of the droplet at t = 0
-dimensional value of the concentration at the infinity
-dimensional concentration in the i-th domain, i = 1,2
-dimensionless concentration in the :-th domain, 1 =1,2
-molecular diffusivity of the solute in the fluid in the i-th domain, 1 = 1,2
-molecular diffusivities ratio, D(1)/D(2)
-first Damkohler number in the i-th domain , M 1=1,2
f(')(;l) U"° 3 y
-second Damkdhler number in the :-th domain, kg(‘.)z, 1=1,2
-enhancement factor
-factor showing the leading viscosity ratio dependence of the
velogity scale in the i-th domain, : = 1,2
-distribution coefficient
-chemical reaction rate constant in the ¢-th domain, 1 =1,2
-highest order of the Legendre polynomials used in the expansion
in the angular direction
-number of terms in the expansion of radial functions in the i-th domain ,i=1,2

-Peclet number in the ¢-th domain, %‘87@, i=1,2

-dimensionless radial coordinate

-droplet radius

-dimensional time

-characteristic velocity scale in the i-th domain, i = 1,2
-velocity of the flow at the infinity

-velocity field in the ¢-th domain nondimensionalized
by the corresponding velocity scale U.(‘), i=1,2
-polar angle in spherical coordinate system

= cos?

-molecular viscosities ratio, u(1)/u(?)

-molecular viscosity of the fluid in the i-th domain, 1= 1,2
-dimensionless time

-convection time scale in the i-th domain, =1,2

__R
I
-diffusion time scale in the i-th domain, 10 D 1,2
-chemical reaction time scale in the i-th domain, k—%'.—), i=1,2
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Table 1: Coefficients in eq.(1) depending on the choice of 7, (3,7 = 1,2)
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Fig. 11 Effect of reaction rate on average Sherwood number Sh for Pe=200 and Pe=500
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